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This project is a python (>= 3.7) implementation (library and CLI) of Publicly Verifiable Secret Splitting (PVSS).

PVSS is a non-interactive cryptographic protocol between multiple participants for splitting a random secret into
multiple shares and distributing them amongst a group of users. An arbitrary subset of those users (e.g. any 3 out of
5) can later cooperate to reassemble the secret.

The common use case for secret splitting is to create a highly durable backup of highly sensitive data such as crypto-
graphic keys.

All communication between the participants is public and everyone can verify that all messages have been correctly
created according to the protocol. This verification is done through non-interactive zero-knowledge proofs.

The math is based upon the paper Non-Interactive and Information-Theoretic Secure Publicly Verifiable Secret Sharing
by Chunming Tang et al. who extended Berry Schoenmaker’s paper A Simple Publicly Verifiable Secret Sharing
Scheme and its Application to Electronic Voting which in turn is based on Shamir’s Secret Sharing.

One notable difference to prior work is the addition of a receiver user: In their scheme the secret is made public while
it is being reassembled, which violates the goal to keep the secret secret. To address this issue, the users no longer
disclose their share of the secret but use ElGamal encryption to securely convey the share to a separate receiver user
who will then reassemble the secret. Like all other communication, the encrypted share is public and it can be verified
that the users followed the protocol.
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CHAPTER

ONE

INSTALLATION

PVSS’s dependencies are:

• python (>= 3.7)

• At least one of:

– libsodium (>= 1.0.18, recommended, for Ristretto255 group)

On Debian (Bullseye / 11 and later) or Ubuntu (Eoan / 19.10 and later):

# apt install libsodium23

– gmpy2 (Group of quadratic residues modulo a large safe prime)

You can install PVSS with pip:

$ pip install pvss

And optionally:

$ pip install gmpy2

3
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CHAPTER

TWO

USE CASES

The generic use case of PVSS is to create a secure and durable backup of some highly valuable information.

2.1 Offline backup for cryptographic keys

Many applications utilize public-key cryptography and require a private key for their operation. Examples are Certifi-
cate Authorities, SSH clients, email users and web servers.

If a private key is disclosed, a lot of damage can be done, e.g. issuing false certificates, signing into SSH servers,
faking email signatures or impersonating a web application to intercept data. That means that private keys must be kept
private. One approach is to store the key on some Hardware Security Module which will carry out the cryptographic
operations but won’t allow to create a copy of the key.

On the other hand, private keys must stay available. Through hardware defects or human mistakes a private key can
be easily destroyed, meaning one can no longer issue new certificates, logon to a SSH server, sign or decrypt emails
or operate the web server.

For web servers, there is a trivial solution: If the private key is disclosed, revoke its certificate. If the key is destroyed,
simply create a new private key and issue a new certificate.

For the other use cases, there is no easy solution. But the next best thing is PVSS:

When generating a new private key, PVSS is used to create a random secret. The private key is encrypted symmetrically
with this secret, e.g. with AES-GCM. The random secret is split among 𝑛 semi-trusted users. It is defined that any
1𝑡𝑛 of those users can cooperate to reassemble the secret.

Once access to the private key is needed, a special receiver user is created. 𝑡 of the users need to re-encrypt their key
shares with the receiver’s public key. Only the receiver can then reassemble and decrypt the private key. The key could
be stored directly into some HSM and then wiped from the receiver’s memory.

2.2 Backup of arbitrary data

Similarly, arbitrary data can be backupped securely. For each new backup job, PVSS is used to create and split a
new random secret which is used to symmetrically encrypt (e.g. AES-GCM) the backupped data. The encrypted data
(along with the PVSS files) is then stored with high durability in mind.

For restoring the data, any 1𝑡𝑛 of the users cooperate to reassemble the secret key.

5
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CHAPTER

THREE

PROTOCOL WORKFLOW

The PVSS protocol consists of multiple steps. Each step yields one or multiple messsages that need to be available to
the next steps.

3.1 Initialization

Mathematical parameters must be chosen, such as a cyclic group and several generators for it.

3.2 User key pair generation

Each user generates a private key (which is never disclosed to any other party), computes the public key and shares it.

3.3 Secret splitting

The dealer randomly generates a secret, computes a share for each user and encrypts each share with the corresponding
user’s public key. The generated secret is used to encrypt the actual payload. The encrypted payload and the encrypted
shares are published.

3.4 Recipient key pair generation

As soon as there is need to reassemble the secret, the intended recipient of the secret generates another keypair and
shares the public key.

3.5 Share re-encryption

Some of the users decrypt their share and re-encrypt it with the recipient’s public key.

7
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3.6 Secret reassembly

The recipient decrypts those shares and reassembles the secret.

8 Chapter 3. Protocol Workflow



CHAPTER

FOUR

COMMAND LINE INTERFACE

A single command line utility pvss is provided to serve as an example on how to use the API.

Generic usage is pvss <datadir> <command> [ARGS...] where datadir is some directory which con-
tains all public messages from the PVSS workflow.

Help for the available commands is included in the tool: pvss --help

4.1 Example

The following sequence of shell commands is executed by six different users who share a data directory. E.g. use git
to synchronize it between the users. All files inside datadir are public. All files outside of it are private.

(init) $ pvss datadir genparams rst255
(alice) $ pvss datadir genuser Alice alice.key
(boris) $ pvss datadir genuser Boris boris.key
(chris) $ pvss datadir genuser Chris chris.key
(dealer) $ pvss datadir splitsecret 2 secret0.der
(receiver) $ pvss datadir genreceiver recv.key
(boris) $ pvss datadir reencrypt boris.key
(alice) $ pvss datadir reencrypt alice.key
(receiver) $ pvss datadir reconstruct recv.key secret1.der

secret0.der and secret1.der should compare equal. The dealer and receiver can encrypt an actual payload
by using that file as a shared key.

4.2 Directory Structure

The datadir is made up of:

• parameters - Cryptographic group and other parameters (SystemParameters).

• users - Directory with random file names for each user public key (PublicKey).

• shares - Shared of the secret (SharedSecret).

• receiver - Receiver’s public key (PublicKey).

• reencrypted - Directory with random file names for re-encrypted shares (ReencryptedShare).

9
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CHAPTER

FIVE

LIBRARY USAGE

The public API is accessible through the Pvss class. Each instance stores the public state of a complete PVSS
workflow. Messages created in once instance must be transferred somehow (network, git repo, etc.) and be imported
into the other instances.

5.1 Example

The following code is equivalent to the CLI example, if it would be ran inside a single python process:

from pvss import Pvss
from pvss.ristretto_255 import create_ristretto_255_parameters

# init, genparams
pvss_init = Pvss()
params = create_ristretto_255_parameters(pvss_init)

# alice, genuser
pvss_alice = Pvss()
pvss_alice.set_params(params)
alice_priv, alice_pub = pvss_alice.create_user_keypair("Alice")

# boris, genuser
pvss_boris = Pvss()
pvss_boris.set_params(params)
boris_priv, boris_pub = pvss_boris.create_user_keypair("Boris")

# chris, genuser
pvss_chris = Pvss()
pvss_chris.set_params(params)
chris_priv, chris_pub = pvss_chris.create_user_keypair("Chris")

# dealer, splitsecret
pvss_dealer = Pvss()
pvss_dealer.set_params(params)
pvss_dealer.add_user_public_key(chris_pub)
pvss_dealer.add_user_public_key(alice_pub)
pvss_dealer.add_user_public_key(boris_pub)
secret0, shares = pvss_dealer.share_secret(2)

# receiver, genreceiver
pvss_receiver = Pvss()
pvss_receiver.set_params(params)
recv_priv, recv_pub = pvss_receiver.create_receiver_keypair("receiver")

(continues on next page)
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# boris, reencrypt
pvss_boris.add_user_public_key(alice_pub)
pvss_boris.add_user_public_key(chris_pub)
pvss_boris.set_shares(shares)
pvss_boris.set_receiver_public_key(recv_pub)
reenc_boris = pvss_boris.reencrypt_share(boris_priv)

# alice, reencrypt
pvss_alice.add_user_public_key(boris_pub)
pvss_alice.add_user_public_key(chris_pub)
pvss_alice.set_shares(shares)
pvss_alice.set_receiver_public_key(recv_pub)
reenc_alice = pvss_alice.reencrypt_share(alice_priv)

# receiver, reconstruct
pvss_receiver.add_user_public_key(boris_pub)
pvss_receiver.add_user_public_key(chris_pub)
pvss_receiver.add_user_public_key(alice_pub)
pvss_receiver.set_shares(shares)
pvss_receiver.add_reencrypted_share(reenc_alice)
pvss_receiver.add_reencrypted_share(reenc_boris)
secret1 = pvss_receiver.reconstruct_secret(recv_priv)

print(secret0 == secret1)

5.2 API reference

pvss.qr.create_qr_params(pvss: pvss.pvss.Pvss, params: Union[int, str, ByteString])→ bytes
Create and set QR parameters.

If params is str or a ByteString, assume it’s a diffie-hellman parameter file such as created by “openssl dhparam
4096”, either DER or PEM encoded.

Parameters

• pvss – Pvss object with public values

• params – if int, must be a safe prime, otherwise must be a DH params file with a safe
prime.

Returns DER encoded QR system parameters.

pvss.ristretto_255.create_ristretto_255_parameters(pvss: pvss.pvss.Pvss)→ bytes
Create and set Ristretto255 parameters.

Parameters pvss – Pvss object with public values

Returns DER encoded Ristretto255 system parameters.

class pvss.Pvss
Main class to work with Pvss. Stores all public messages and exposes the PVSS operations.

The constructor takes no parameters.

add_reencrypted_share(data: ByteString)→ pvss.pvss.ReencryptedShare
Add a re-encrypted share to the internal state.

Parameters data – DER encoded re-encrypted share.

12 Chapter 5. Library Usage
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Returns Decoded reencrypted share.

Raises ValueError – On duplicate

add_user_public_key(data: ByteString)→ pvss.pvss.PublicKey
Add a user public key to the internal state.

Parameters data – DER encoded public key

Returns Decoded user public key.

Raises ValueError – On duplicate name or public key value

create_receiver_keypair(name: str)→ Tuple[bytes, bytes]
Create a random key pair for the receiver.

Parameters name – Name of key; will be included in the public key.

Returns DER encoded private key and public key

create_user_keypair(name: str)→ Tuple[bytes, bytes]
Create a random key pair for a user.

Parameters name – Name of key; will be included in the public key.

Returns DER encoded private key and public key

property params
Retrieve system parameters.

Returns The system parameters.

property receiver_public_key
Retrieve receiver’s public key.

Returns Receiver’s public key.

reconstruct_secret(der_private_key: ByteString)→ bytes
Decrypt the re-encrypted shares with the private key and reconstruct the secret

Parameters der_private_key – Receiver’s DER encoded private key

Returns DER encoded secret

reencrypt_share(der_private_key: ByteString)→ bytes
Decrypt a share of the encrypted secret with the private_key and re-encrypt it with another public key

Parameters der_private_key – A user’s DER encoded private key

Returns DER encoded re-encrypted share

property reencrypted_shares
Retrieve the list of reencrypted shares.

Returns List of reencrypted shares.

set_params(data: ByteString)→ pvss.pvss.SystemParameters
Set system parameters.

Args data: DER encoded system parameters.

Returns Decoded system parameters.

Raises Exception – If already set.

set_receiver_public_key(data: ByteString)→ pvss.pvss.PublicKey
Add the receiver’s public key to the internal state.

5.2. API reference 13
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Parameters data – DER encoded receiver’s public key.

Returns Decoded receiver’s public key.

Raises Exception – On duplicate

set_shares(data: ByteString)→ pvss.pvss.SharedSecret
Set the shares of the secret.

Parameters data – DER encoded secret shares.

Returns Decoded secret shares.

Raises Exception – If already set.

share_secret(qualified_size: int)→ Tuple[bytes, bytes]
Create a secret, split it and compute the encrypted shares.

Parameters qualified_size – Number of shares required to reconstruct the secret

Returns DER encoded shared secret and the DER encoded encrypted shares

property shares
Retrieve the shares of the secret.

Returns Shares of the secret.

property user_public_keys
Retrieve all user public keys, as mapping from username to PublicKey.

Returns Mapping of username to PublicKey.

14 Chapter 5. Library Usage



CHAPTER

SIX

ALGORITHMS

6.1 Notation used in formulas

Heissler Schoen-makers Tang et al. Description
𝛼𝑗0 𝛼𝑗 𝛼𝑗 Secret coefficients for 𝑓0
𝛼𝑗1 𝛽𝑗 Secret coefficients for 𝑓1
𝑎𝑖 First part of ElGamal ciphertext.
𝑎′𝑖 Randomized commitment for 𝑎𝑖.
𝑏𝑖 Second part of ElGamal ciphertext.
𝐶𝑗 𝐶𝑗 𝐶𝑗 Commitments for the coefficients 𝛼𝑗0,1.
𝑐 𝑐 𝑐 Challenge for zero knowledge proofs, generated by hash function.
𝑒 Identity element of (image) group.
𝑒′ Randomized commitment for 𝑒.
𝑓0(𝑖) 𝑝(𝑥) 𝑓(𝑥) Polynomial with secret coefficients 𝛼𝑗0

𝑓1(𝑖) 𝑔(𝑥) Polynomial with secret coefficients 𝛼𝑗1

𝐺0 𝐺 𝐺 Generator for 𝐺𝑞

𝐺1 𝐻 Generator for 𝐺𝑞

𝐺𝑞 𝐺𝑞 𝐺𝑞 Finite cyclic group of prime order 𝑞, used as the image group for all group isomorphisms. Computing discrete logarithms in this group must be infeasible.
𝑔0 𝑔 𝑔 Generator for 𝐺𝑞

𝑔1 ℎ Generator for 𝐺𝑞

𝑖 𝑖 𝑖 Unique index for user, 𝑖 ∈ [0, 𝑞), usually 1 ≤ 𝑖 ≤ 𝑛.
𝑖′ 𝑗 𝑗 Another iterator for user indices, used during reconstruction.
𝑗 𝑗 𝑗 Indices for coefficients, 0 ≤ 𝑗𝑡
𝑘. . . 𝑤 𝑠, 𝑡 Values ∈𝑅 𝑍𝑞 for computing the Prover’s commitment in zero knowledge proofs.
𝑛 𝑛 𝑛 Number of users.
𝑞 𝑞 𝑞 Size of 𝐺𝑞 and 𝑍𝑞

𝑆 𝑆 𝑆 Shared secret ∈ 𝐺𝑞 , generated by dealer and reconstructed by receiver.
𝑆𝑖 𝑆𝑖 𝑆𝑖 User 𝑖’s share of the shared secret.
𝑠. . . 𝑟𝑖 𝑟𝑖1, 𝑟𝑖2 Responses for zero knowledge proofs.
𝑡 𝑡 𝑡 Size of qualified subset of users able to reconstruct the secret, 1 ≤ 𝑡 ≤ 𝑛.
𝑣0,1 Helper variables used in zero-knowledge proof for re-encryption.
𝑤0,1 Random values for ElGamal encryption.
𝑋𝑖 𝑋𝑖 𝑋𝑖 Shares with alternative generator 𝑔0,1.
𝑋 ′

𝑖 𝑎1𝑖/𝑋
𝑐
𝑖 𝑎1𝑖/𝑋

𝑐
𝑖 Randomized commitment for 𝑋𝑖.

𝑥𝑖 𝑥𝑖 𝑥𝑖 Private key ∈𝑅 𝑍*
𝑞 for user 𝑖

𝑥𝑟 Private key ∈𝑅 𝑍*
𝑞 for recipient

𝑌𝑖 𝑌𝑖 𝑌𝑖 Encrypted share for each user.
𝑌 ′
𝑖 𝑎2𝑖/𝑌

𝑐
𝑖 𝑎2𝑖/𝑌

𝑐
𝑖 Randomized commitment for 𝑌𝑖.

Continued on next page
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Table 1 – continued from previous page
Heissler Schoen-makers Tang et al. Description
𝑦𝑖0 𝑦𝑖 𝑦𝑖1 First public key part for users, 𝑦𝑖0 = 𝐺𝑥𝑖

0

𝑦𝑖1 𝑦𝑖2 Second public key part for users, 𝑦𝑖1 = 𝐺𝑥𝑖
1

𝑦𝑖 y_i Product of public key parts, 𝑦𝑖 = 𝑦𝑖0 · 𝑦𝑖1
𝑦′𝑖 Randomized commitment for 𝑦𝑖.
𝑦𝑟0 First public key part for recipient, 𝑦𝑟0 = 𝐺𝑥𝑟

0

𝑦𝑟1 Second public key part for recipient, 𝑦𝑟1 = 𝐺𝑥𝑟
1

𝑍𝑞 𝑍𝑞 𝑍𝑞 Additive group of integers modulo prime 𝑞, used as the pre-image group for all group isomorphisms.
𝑍*
𝑞 𝑍*

𝑞 𝑍*
𝑞 𝑍𝑞 ∖ {0}

6.2 Operations

The protocol consists of six steps which are executed in sequence. The last three steps can be repeated if another
reconstruction is desired.

Each step requires the public input from all previous steps.

Recipients of public values must check if those values conform to this protocol, e.g. if groups are really of prime order
and if group members really are inside the group.

Recipients of public values must also ensure that those value were not modified by a third party. How to accomplish
this is out of scope of this chapter.

6.2.1 Initialization

Choose a prime order group 𝐺𝑞 in which computing discrete logarithms is infeasible. Also choose four distinct
generators 𝑔0, 𝑔1, 𝐺0, 𝐺1 for it.

No party must know the discrete logarithm of any generator with respect to any other. Therefore those generators must
be picked from 𝐺𝑞 using a public procedure which follows the concept of nothing-up-my-sleeve, e.g. by appying a
cryptographic hash function to sensible input values.

The chosen group and generators are public.

Example groups to choose from:

• Ristretto255, a group built upon curve25519.

• Multiplicative group of quadratic residues modulo safe prime 𝑝 = 2𝑞 + 1

• NIST P-256 (§ D.1.2.3). Should only be used if required by hardware constraints.

6.2.2 Key Pair generation

There are 𝑛 users. Each is assigned a unique integer 𝑖 ∈ [1, 𝑞). Typically those are 1 ≤ 𝑖 ≤ 𝑛. Each user generates a
private key 𝑥𝑖 ∈ 𝑍*

𝑞 and the corresponding public key 𝑦𝑖0 = 𝐺𝑥𝑖
0 , 𝑦𝑖1 = 𝐺𝑥𝑖

1 .

The private key is kept private and the public key is published.

16 Chapter 6. Algorithms
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6.2.3 Secret Splitting

The dealer computes a random shared secret 𝑆 and splits it into encrypted shares 𝑌𝑖 for each user 𝑖. The dealer also
shows that those encrypted shares are consistent by producing a non-interactive zero-knowledge proof of knowledge.

To achieve this, the dealer carries out the following steps:

• Define how many shares are required to reconstruct the secret: 𝑡 ∈ [1, 𝑛].
This is also known as the size of the qualified subset of users.

• Choose two polynomials with random coefficients:

– 𝑓0(𝑖) =
𝑡−1∑︀
𝑗=0

𝛼𝑗0𝑖
𝑗 , 𝛼𝑗0 ∈𝑅 𝑍𝑞

– 𝑓1(𝑖) =
𝑡−1∑︀
𝑗=0

𝛼𝑗1𝑖
𝑗 , 𝛼𝑗1 ∈𝑅 𝑍𝑞

• Compute the shared secret:

𝑆 = 𝐺
𝑓0(0)
0 𝐺

𝑓1(0)
1 = 𝐺𝛼00

0 𝐺𝛼01
1 .

• Compute commitments for the coefficients:
𝐶𝑗 = 𝑔

𝛼𝑗0
0 𝑔

𝛼𝑗1
1 , 𝑗 ∈ [0, 𝑡).

• For each user 𝑖, compute:

– Random values for commitments:
𝑘𝑖0, 𝑘𝑖1 ∈𝑅 𝑍𝑞

– Encrypted share:

𝑌𝑖 = 𝑦𝑖
𝑓0(𝑖)
0 𝑦𝑖

𝑓1(𝑖)
1

– Random commitment for 𝑌𝑖:
𝑌 ′
𝑖 = 𝑦𝑖

𝑘𝑖0
0 𝑦𝑖

𝑘𝑖1
1

– Share with alternative generators:

𝑋𝑖 = 𝑔
𝑓0(𝑖)
0 𝑔

𝑓1(𝑖)
1

– Random commitment for 𝑋𝑖:
𝑋 ′

𝑖 = 𝑔𝑘𝑖0
0 𝑔𝑘𝑖1

1

• Compute the challenge for the zero knowledge proof using a cryptographic hash function 𝑐 =
𝐻(𝐺, 𝑔0, 𝑔1, 𝐺0, 𝐺1, 𝐶𝑗 , 𝑦𝑖, 𝑌𝑖, 𝑌

′
𝑖 , 𝑋𝑖, 𝑋

′
𝑖) with 𝑗 ∈ [0, 𝑡) and for all users 𝑖.

How those values are serialised into an input for the hash function is not important as long as it is deterministic
and impossible to generate the same serialisation for different values. The output of the hash function needs to
be a non-negative integer. This can be achieved e.g. by using sha2_256 and treating the 256 bit output as an
integer.

• Compute the response for the zero knowledge proof for each user 𝑖:

– 𝑠𝑖0 = 𝑘𝑖0 + 𝑐𝑓0(𝑖)

– 𝑠𝑖1 = 𝑘𝑖1 + 𝑐𝑓1(𝑖)

This proves knowledge of the values 𝑓0(𝑖) and 𝑓1(𝑖) that were used to calculate 𝑋𝑖, 𝑌𝑖.

The dealer then publishes the values 𝑡, 𝑐, 𝐶𝑗 , 𝑌𝑖, 𝑠𝑖0, 𝑠𝑖1.

The shared secret 𝑆 can be used to encrypt some payload, e.g. by computing a hash over it and using it as the key for
some symmetric encryption function like AES-GCM. It must then be discarded.

The polynomials 𝑓0,1 and the random values 𝑘𝑖0,1 are secret and must be discarded.

6.2. Operations 17
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The values 𝑌 ′
𝑖 , 𝑋𝑖, 𝑋

′
𝑖 could be made public, but other parties can recompute them. So they are discarded too.

Verification

To verify that the public values generated by the splitting operation are consistent, the following steps are carried out:

• For each user 𝑖, compute:

– 𝑌 ′
𝑖 = 𝑦𝑖

𝑠𝑖0
0 𝑦𝑖

𝑠𝑖1
1 𝑌 −𝑐

𝑖

– 𝑋𝑖 =
𝑡−1∏︀
𝑗=0

𝐶
(𝑖𝑗)
𝑗

– 𝑋 ′
𝑖 = 𝑔𝑠𝑖00 𝑔𝑠𝑖11 𝑋−𝑐

𝑖

• Compute the challenge for the zero knowledge proof using a cryptographic hash function 𝑐′ =
𝐻(𝐺, 𝑔0, 𝑔1, 𝐺0, 𝐺1, 𝐶𝑗 , 𝑦𝑖, 𝑌𝑖, 𝑌

′
𝑖 , 𝑋𝑖, 𝑋

′
𝑖) with 𝑗 ∈ [0, 𝑡) and for all users 𝑖.

• Verify that 𝑐 = 𝑐′

6.2.4 Receiver key pair generation

The recipient generates a private key 𝑥𝑟 ∈ 𝑍*
𝑞 and the corresponding public key 𝑦𝑟0 = 𝐺𝑥𝑟

0 , 𝑦𝑟1 = 𝐺𝑥𝑟
1 .

The private key is kept private and the public key is published.

If the following two operations are executed quickly, the private key should be kept in ephemeral storage to reduce the
risk of subsequential leakage.

6.2.5 Share reencryption

A user can decrypt their share and use ElGamal Encryption to re-encrypt it with the receiver’s public key. The user
needs to produce a non-interactive zero knowledge proof to show that the reencrypted secret was correctly computed.

• Decrypt share by raising it to power of the multiplicative inverse of the user’s private key:

𝑆𝑖 = 𝑌
1
𝑥𝑖
𝑖

• Choose two random values:
𝑤0, 𝑤1 ∈𝑅 𝑍𝑞

• Re-encrypt decrypted share using ElGamal encryption:
𝑎𝑖 = 𝐺𝑤0

0 ·𝐺𝑤1
1

𝑏𝑖 = 𝑆𝑖 · 𝑦𝑟𝑤0
0 · 𝑦𝑟𝑤1

1

Next, the user needs to prove knowledge of the secret values 𝑥𝑖, 𝑆𝑖, 𝑤0, 𝑤1 such that

• 𝑦𝑖 = 𝑦𝑖0 · 𝑦𝑖1 = (𝐺0 ·𝐺1)
𝑥𝑖

• 𝑌𝑖 = 𝑆𝑥𝑖
𝑖

• 𝑎𝑖 = 𝐺𝑤0
0 ·𝐺𝑤1

1

• 𝑏𝑖 = 𝑆𝑖 · 𝑦𝑟𝑤0
0 · 𝑦𝑟𝑤1

1

hold. This can’t be proven directly because 𝑆𝑖 is secret.

• Compute two helper variables:
𝑣0 = −𝑤0𝑥𝑖, 𝑣1 = −𝑤1𝑥𝑖

• Eliminate 𝑆𝑖:
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𝑌𝑖 = 𝑏𝑥𝑖
𝑖 · 𝑦𝑟𝑣00 · 𝑦𝑟𝑣1

1

• The user then needs to prove
𝑣0 = −𝑤0𝑥𝑖 ∧ 𝑣1 = −𝑤0𝑥𝑖

which can’t be done directly either.

• Instead, the user proves
𝑒 = 𝑎𝑥𝑖

𝑖 ·𝐺𝑣0
0 ·𝐺𝑣1

1

where 𝑒 is the identity element of the image group.

The user thus proves knowledge of the secret values 𝑥𝑖, 𝑣0, 𝑣1, 𝑤0, 𝑤1 such that

• 𝑦𝑖 = (𝐺0 ·𝐺1)
𝑥𝑖

• 𝑎𝑖 = 𝐺𝑤0
0 ·𝐺𝑤1

1

• 𝑌𝑖 = 𝑏𝑥𝑖
𝑖 · 𝑦𝑟𝑣00 · 𝑦𝑟𝑣11

• 𝑒 = 𝑎𝑥𝑖
𝑖 ·𝐺𝑣0

0 ·𝐺𝑣1
1

hold. Compute:

• Choose random values 𝑘𝑥,𝑣0,𝑣1,𝑤0,𝑤1
∈𝑅 𝑍𝑞

• Random commitment for 𝑦𝑖.
𝑦′𝑖 = (𝐺0 ·𝐺1)

𝑘𝑥

• Random commitment for 𝑌𝑖.

𝑌 ′
𝑖 = 𝑏𝑘𝑥

𝑖 · 𝑦𝑟
𝑘𝑣0
0 · 𝑦𝑟

𝑘𝑣1
1

• Random commitment for 𝑎𝑖.

𝑎′𝑖 = 𝐺
𝑘𝑤0
0 ·𝐺𝑘𝑤1

1

• Random commitment for 𝑒.
𝑒′ = 𝑎𝑘𝑥

𝑖 ·𝐺𝑘𝑣0
0 ·𝐺𝑘𝑣1

1

Compute the challenge for the zero knowledge proof using a cryptographic hash function 𝑐 =
𝐻(𝐺, 𝑔0, 𝑔1, 𝐺0, 𝐺1, 𝑋𝑋𝑋, 𝑦𝑟0, 𝑦𝑟1, 𝑦

′
𝑖, 𝑌

′
𝑖 , 𝑎

′
𝑖, 𝑒

′)

Compute the response for the zero knowledge proof:

• 𝑠𝑥 = 𝑘𝑥 + 𝑐𝑥𝑖

• 𝑠𝑣0 = 𝑘𝑣0 + 𝑐𝑣0

• 𝑠𝑣1 = 𝑘𝑣1 + 𝑐𝑣1

• 𝑠𝑤0 = 𝑘𝑤0 + 𝑐𝑤0

• 𝑠𝑤1 = 𝑘𝑤1 + 𝑐𝑤1

The user publishes the values 𝑎𝑖, 𝑏𝑖, 𝑐, 𝑠𝑥, 𝑠𝑣0, 𝑠𝑣1, 𝑠𝑤0, 𝑠𝑤1.
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Verification

To verify that the re-encrypted share was computed correctly, the following steps are carried out:

• 𝑦′𝑖 = (𝐺0 ·𝐺1)
𝑠𝑥 · (𝑦𝑖0 · 𝑦𝑖1)−𝑐

• 𝑌 ′
𝑖 = 𝑏𝑠𝑥𝑖 · 𝑦𝑟

𝑠𝑣0
0 · 𝑦𝑟

𝑠𝑣1
1 · 𝑌 −𝑐

𝑖

• 𝑎′𝑖 = 𝐺
𝑠𝑤0
0 ·𝐺𝑠𝑤1

1 · 𝑎−𝑐
𝑖

• 𝑒′ = 𝑎𝑠𝑥𝑖 ·𝐺𝑠𝑣0
0 ·𝐺𝑠𝑣1

1

• 𝑐′ = 𝐻(𝐺, 𝑔0, 𝑔1, 𝐺0, 𝐺1, 𝑋𝑋𝑋, 𝑦𝑟0, 𝑦𝑟1, 𝑦
′
𝑖, 𝑌

′
𝑖 , 𝑎

′
𝑖, 𝑒

′)

• Verify that 𝑐 = 𝑐′

Completeness

An honest prover can always carry out the operations described above to convince any verifier.

Soundness

Assuming a random oracle model, the hash function might return the value 𝑐0 and in a different universe it might
return 𝑐1 for the same input, where 𝑐1 = 𝑐0 + 1. If the prover is somehow able to generate valid 𝑠𝑥𝑖0 and 𝑠𝑥𝑖1 with
high probability, he can e.g. compute 𝑠𝑥𝑖1− 𝑠𝑥𝑖0 = (𝑘𝑥𝑖

+(𝑐0+1)𝑥𝑖)− (𝑘𝑥𝑖
+ 𝑐0𝑥𝑖) = 𝑥𝑖. The same idea is applied

to the other secret variables. I.e. even if a “lucky” prover does not know the secret variables, he could easily compute
them. We don’t believe in such luck but assume that the prover knows the secrets.

This proves knowledge of values 𝑥𝑖, 𝑣0, 𝑣1, 𝑤0, 𝑤1 such that:

• 𝑦𝑖 = (𝐺0 ·𝐺1)
𝑥𝑖

• 𝑎𝑖 = 𝐺𝑤0
0 ·𝐺𝑤1

1

• 𝑌𝑖 = 𝑏𝑥𝑖
𝑖 · 𝑦𝑟𝑣00 · 𝑦𝑟𝑣11

To prove that 𝑒 = 𝑎𝑥𝑖
𝑖 ·𝐺𝑣0

0 ·𝐺𝑣1
1 , remember that the verifier computes 𝑒′ and includes it in the hash input.

𝑒′ = 𝑎
𝑠𝑥1
𝑖 ·𝐺𝑠𝑣0

0 ·𝐺𝑠𝑣1
1 = 𝑎

𝑘𝑥𝑖
+𝑐𝑥𝑖

𝑖 ·𝐺𝑘𝑣0+𝑐𝑣0
0 ·𝐺𝑘𝑣1+𝑐𝑣1

1 = (𝑎𝑥𝑖
𝑖 ·𝐺𝑣0

0 ·𝐺𝑣1
1 )𝑐 · (𝑎𝑘𝑥𝑖

𝑖 ·𝐺𝑘𝑣0
0 ·𝐺𝑘𝑣1

1 )

If 𝑒 = 𝑎𝑥𝑖
𝑖 · 𝐺𝑣0

0 · 𝐺𝑣1
1 holds, the prover can easily compute 𝑒′ = 𝑎

𝑘𝑥𝑖
𝑖 · 𝐺𝑘𝑣0

0 · 𝐺𝑘𝑣1
1 which does not depend on 𝑐.

Otherwise, the value of 𝑒′ would depend on 𝑐 and vice versa. It may be possible to find such a pair, but it’s infeasible.
So we assume that it does hold.

Next, substitute 𝑎𝑖: 𝑒 = (𝐺𝑤0
0 ·𝐺𝑤1

1 )𝑥𝑖 ·𝐺𝑣0
0 ·𝐺𝑣1

1 = 𝐺𝑤0𝑥𝑖+𝑣0
0 ·𝐺𝑤0𝑥𝑖+𝑣1

1 .

The prover does not know the discrete logarithm of 𝐺0 with regards to 𝐺1 or vice versa, so we can assume that the
prover chose 𝑣0 = −𝑤0𝑥𝑖 ∧ 𝑣1 = −𝑤1𝑥𝑖.

It follows that 𝑌
1
𝑥𝑖
𝑖 = 𝑏𝑖 · 𝑦𝑟−𝑤0

0 · 𝑦𝑟−𝑤1
1 = 𝑆𝑖.
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Zero Knowledge

The response values 𝑠. . . each depend on a different random number 𝑘. . . and are evenly distributed over all possible
values. A verifier could generate random responses which obviously would contain no useful information at all. There
is no way to distinguish an actual response from a random response.

The challenge 𝑐 which is provided by the prover is also computed by the verifier, so it doesn’t depend on secret
information either.

If a verifier can compute the discrete logarithm for any of the random commitments, they could deduce the secret
value. But this is just as hard as computing the secret value directly.

6.2.6 Secret reconstruction

When at least 𝑡 users re-encrypted their shares with the receiver’s public key, the receiver can reconstruct the secret:

• Decrypt each re-encrypted share:

𝑆𝑖 = 𝑏𝑖 · 𝑎
1
𝑥𝑟
𝑖

• Reconstruct the secret:
𝑆 =

∏︀
𝑖

𝑆𝜆𝑖
𝑖 , 𝜆𝑖 =

∏︀
𝑖′,𝑖′ ̸=𝑖

𝑖′

𝑖′−𝑖

where 𝑖, 𝑖′ are the user indices for all re-encrypted shares.
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CHAPTER

SEVEN

DATA STRUCTURES

PVSS is a protocol between multiple parties who must exchange a number of messages. Those messages are DER
encoded ASN.1 structures. This format was chosen because it’s well defined and has little overhead. Also, the
zero knowledge proofs require computation of a cryptographic hash. The input to the hash function needs to be
deterministic.

The contents of the messages can be accessed using any standard ASN.1 tools, e.g.:

$ dumpasn1 -ade message
$ openssl asn1parse -inform der -in message

7.1 Message sizes

For the Ristretto255 group, typical message sizes are:

• Secret: 36 Bytes.

• PreGroupValue: (up to) 34 Bytes.

• ImgGroupValue: 34 Bytes.

• SystemParameters: 18 Bytes.

• PrivateKey: (up to) 36 Bytes.

• PublicKey: 72 + |𝑛𝑎𝑚𝑒| Bytes.

• SharedSecret: (up to) 44 + 34𝑡+ 106𝑛+ |𝑛𝑎𝑚𝑒𝑠| Bytes.

• ReencryptedShare: (up to) 279 Bytes.

For the qr_mod_p group, the size depends on the safe prime. With a 4096 bit prime, the messages are about 12-16
times as large.

7.2 Object Identifiers

Prefix: 1.3.6.1.4.1.55040.1.0 (iso.org.dod.internet.private.enterprise.heissler-informatik.floss.pvss)

Parent: https://github.com/joernheissler/oids
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Suffix Description
0 ASN.1 module
1 Image groups
1.0 qr_mod_p: Quadratic residues in multiplicative group modulo safe prime p
1.1 ristretto_255: https://ristretto.group/

7.3 ASN.1 module

PVSS-Module {
iso(1) org(3) dod(6) internet(1) private(4) enterprise(1)
heissler-informatik(55040) floss(1) pvss(0) id-mod-pvss(0)

} DEFINITIONS ::=

BEGIN

id-pvss OBJECT IDENTIFIER ::= {
iso(1) org(3) dod(6) internet(1) private(4) enterprise(1)
heissler-informatik(55040) floss(1) pvss(0)

}

id-alg OBJECT IDENTIFIER ::= { id-pvss 1 }

-- A pre group value
PreGroupValue ::= INTEGER

-- An image group value; type depends on the algorithm
ImgGroupValue ::= CHOICE {

qrValue INTEGER,
ecPoint OCTET STRING

}

-- System parameters, e.g. the mathematical group
SystemParameters ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm

}

id-alg-qr OBJECT IDENTIFIER ::= { id-alg 0 }
SystemParametersQr ::= INTEGER

id-alg-rst255 OBJECT IDENTIFIER ::= { id-alg 1 }
SystemParametersRst255 ::= NULL

-- A user's public key
PublicKey ::= SEQUENCE {

name UTF8String,
pub0 ImgGroupValue,
pub1 ImgGroupValue

}

-- A user's private key
PrivateKey ::= SEQUENCE {

priv PreGroupValue
}

(continues on next page)
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(continued from previous page)

-- Secret that is split and reconstructed
Secret ::= SEQUENCE {

secret ImgGroupValue
}

-- Per user values of SharedSecret
Share ::= SEQUENCE {

pub UTF8String,
share ImgGroupValue,
responseF0 PreGroupValue,
responseF1 PreGroupValue

}

-- Sequence of per user values of SharedSecret
Shares ::= SEQUENCE OF Share

-- Commitments for polynomial coefficients
Coefficients ::= SEQUENCE OF ImgGroupValue

-- Shares of the secret
SharedSecret ::= SEQUENCE {

shares Shares,
coefficients Coefficients,
challenge OCTET STRING

}

-- Per user hash input, used for SharesChallenge
HashInputUser ::= SEQUENCE {

pub PublicKey,
commitment ImgGroupValue,
randomCommitment ImgGroupValue,
share ImgGroupValue,
randomShare ImgGroupValue

}

-- Sequence of per user hash input, used for SharesChallenge
HashInputUsers ::= SEQUENCE OF HashInputUser

-- Input to hash function, results in SharedSecret.challenge
SharesChallenge ::= SEQUENCE {

parameters SystemParameters,
coefficients Coefficients,
users HashInputUsers

}

-- Sequence of all public keys, used for ReencryptedChallenge
PublicKeys ::= SEQUENCE OF PublicKey

-- Input to hash function, results in ReencryptedShare.challenge
ReencryptedChallenge ::= SEQUENCE {

parameters SystemParameters,
publicKeys PublicKeys,
shares SharedSecret,
receiverPublicKey PublicKey,
randPub ImgGroupValue,
randShare ImgGroupValue,

(continues on next page)
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(continued from previous page)

randElgA ImgGroupValue,
randId ImgGroupValue

}

-- User's share after re-encryption
ReencryptedShare ::= SEQUENCE {

idx INTEGER,
elgA ImgGroupValue,
elgB ImgGroupValue,
responsePriv PreGroupValue,
responseV0 PreGroupValue,
responseV1 PreGroupValue,
responseW0 PreGroupValue,
responseW1 PreGroupValue,
challenge OCTET STRING

}

-- Allows auto detection of a message's purpose
PvssContainer ::= CHOICE {

parameters [0] SystemParameters,
privKey [1] PrivateKey,
userPub [2] PublicKey,
recvPub [3] PublicKey,
sharedSecret [4] SharedSecret,
reencryptedShare [5] ReencryptedShare

}

END
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SECURITY
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CHAPTER

NINE

GLOSSARY

Dealer Entity which carries out the split operation

Keypair generation Operation which users and the receiver carry out to generate a key pair consisting of a private
key.

Parameter generation Operation which is carried out once to generate system parameters, e.g. select mathematical
groups and their generators.

Private Key Private part of a key pair. Element of the image group.

Public Key Public part of a key pair. Element of the pre-image group.

PVSS Publicly Verifiable Secret Splitting (or . . . Sharing).

Receiver An entity with a key pair which finally reconstructs the secret.

Reencrypted Share One of the shares; decrypted with the user’s private key and re-encrypted with the receiver’s
public key.

Secret A random secret generated by the Secret Splitting operation.

Secret Reconstruction Operation which takes reencrypted shares, decrypts them with the receiver’s private key and
outputs the secret.

Secret Splitting Operation which generated a random secret, splits it in multiple shares and encrypts those shares
with the users’ public keys.

Share One part of the Secret, encrypted with a user’s public key.

Share Reencryption Operation that a user carries out to decrypt a share and re-encrypt it with the receiver’s public
key.

User An entity with a key pair which receives one of the encrypted shares and can re-encrypt it with the reveiver’s
public key.
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TEN

INDICES AND TABLES

• genindex

• modindex

• search
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